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Abstract There is a gap between direct discrete fracture network numerical model and con-
ceptual multi-linear/porosity analytical model for simulating production performance from
fractured unconventional reservoirs. The principle focus of this work is on proposing a hybrid
model of complexly fractured reservoir by associating fractal theory with multiple-fractured
configuration. The formulation is established on the trilinear-flow idealization presented by
Brown et al. (2009). Our model could account for the heterogeneity of fracture network in
stimulated reservoir volume (SRV) and the arbitrary properties of multiple hydraulic frac-
tures. Furthermore, a semi-analytical solution is correspondingly presented by incorporating
Laplace–Fourier transformation and Stehfest numerical inversion based on the principle
of pressure superposition. The new algorithm integrates multiple trilinear-flow solutions for
single-fracture hypothesis into a general solution formulti-fractured horizontal well. The sec-
ond focus is put on verification of the semi-analytical solution by comparing with alternative
analytical/numerical simulations for two cases: (a) multi-fractures solution in homogeneity
media; (b) multi-fractures solution in heterogeneity media with fractal characteristic. Excel-
lent agreement between alternative simulations and our solutions is achieved. Finally, several
synthetic examples are introduced to illustrate the application of semi-analytical solution in
the field of pressure transient analysis and discuss the effects of the parameters on transient
pressure behavior, including fracture number/spacing, conductivity, fractal characteristic con-
stant and associated anomalous-diffusion constant. Themodel provides a new knowledge and
insight into understanding flow behavior in fractured unconventional reservoirs.
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Nomenclature

B Volume factor, dimensionless
de Euclidean dimension, dimensionless
df Fractal dimension, dimensionless
dw Anomalous diffusion coefficient, dimensionless
Fc Fracture conductivity, m3

h Reservoir height, m
Iv(x) Modified Bessel function of the first kind with order v

Kv(x) Modified Bessel function of the second kind with order v

kSRV Anomalous-diffusion permeability, m2 · s1−γ

krefSRV Anomalous-diffusion reference permeability, m2 · s1−γ

k Permeability, m2

Lm Distance measured from left-hydraulic-fracture plane, m
Ls Fracture spacing, m
nf Number of hydraulic fracture
q Production rate, m3/s
s Dimensionless variable in Laplace-transform domain, dimensionless
T Temperature, K
t Time variable, s
x Spatial variable perpendicular to horizontal well, m
xHF Half-hydraulic-fracture length, m
xR Drainage area width, m
y Spatial variable parallel to horizontal well, m
Z Gas deviation factor, dimensionless
γ Fractional derivative order, dimensionless
η Diffusion capacity, m2

θ Scaling variable, dimensionless
μ Viscosity, pa · s
λ Flow capacity ratio, dimensionless
ζ Symbol indicating right or left part within SRV unit
ρ Density, g/m3

ϕ Porosity, dimensionless

Subscripts

D Dimensionless
HF Hydraulic fracture
ref Reference parameter
SRV Stimulated reservoir volume
XRV External reservoir volume
w Horizontal wellbore

Superscripts

L Left half-hydraulic fracture in elementary SRV unit
R Right half-hydraulic fracture in elementary SRV unit
∼ Laplace transform
∧ Fourier cosine transform
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1 Introduction

Unconventional reservoirs are recently becoming alternative commercial hydrocarbon pro-
duction targets. The successful exploitation of these reservoirs heavily relies on the
combinationof horizontal drilling,multi-stage completions and innovative fracturing (Cipolla
2009; Mayerhofer et al. 2011). To maximize reservoir contact and enhance hydrocarbon
production, the ultra-low permeability reservoir requires an interconnected fracture net-
work with moderate conductivity and relatively small spacing between fractures. Because
of the presence of stress isotropy and pre-existing natural fractures, stimulation treatment
in unconventional reservoir generally create complex fracture network. Therefore, it is a
great challenge to analyze production-decline trend and evaluate post-fracture performance
in such complexly fractured reservoirs. However, direct application of traditional production
performance model would unfortunately contribute to erroneous evaluation and predictions
(Clarkson 2013).

To simulate hydrocarbon production from fractured reservoirs, numerical and analyti-
cal approaches were simultaneously utilized. Numerical methods include direct reservoirs
numerical simulation (Cipolla et al. 2011; Weng et al. 2011) and dual continuum model
with discrete fracture network (Wu et al. 2007; Monifar et al. 2013). Although numerical
model provides an accurate insight into the production performance of complex fracture
network (Cipolla 2009), but numerical-simulation knowledge requirement and the associ-
ated huge time-consuming computation make this method less attractive and practicable.
Comparably, analytical model is a major simplification of actual physical system, which was
presented in the form of multi-continuum model (Tivayanonda et al. 2012; Zhao et al. 2014)
and multi-linear flow model (EI-Banbi and Wattenbarger 1998; Wattenbarger et al. 1998a;
Brown et al. 2009; Bello and Wattenbarger 2010; Obinna and Hassan 2014). It is versatile
enough to capture the fundamental characteristics of conducting flow throughout in fractured
reservoirs. Numerous studies have confirmed that this approach has no capacity of providing
accurate solutions in the presence of SRV, but is advantageous in terms of computational
convenience; thus, linear flow model is recast to be applicable for analyzing production data
from hydraulically fractured wells.

Compared with these standard models assuming uniform permeability throughout reser-
voirs, non-uniform permeability distribution was introduced to account for the complexity
of the induced fracture network as the result of hydraulic fracturing operation. Under this
circumstance, enhanced region model was implemented to capture the difference between
stimulated and un-stimulated regions around hydraulic fractures, highlighting the nonuniform
within SRV (Stalgorova and Mattar 2012, 2013). To address the concerns about the nonuni-
form characteristics in heterogeneous porous media, fractal theory is recently proposed to
describe the fractured media, such as power-law-type variation in flow capacity [e.g., applied
in RTA presented by Chang and Yortsos (1990), RTA presented by Camacho-Velázquez
et al. (2008)], and linear or exponential variation in flow capacity [see Fuentes-Cruz et al.
(2014a, b), 2015 for a detailed description for the single- and dual-porosity idealizations].

In this work, we establish a hybrid model combining trilinear-flow model with fractal
geometry and multi-fractured configuration. This model takes into account distance-
dependent properties and associated anomalous diffusion, highlighting the heterogeneity of
petrophysical properties within SRV and the interaction between hydraulic fractures. Com-
pared with previous works, the improvement of this model is threefold: (1) it relaxes the
assumption of uniform permeability and porosity field for trilinear-flow model [Brown’s
model (2009) was built on the uniform assumption]; (2) it associates the fractal theory with
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anomalous diffusion theory to account for the flow characteristics in fractured media [Cossio
et al. (2013) just used fractal diffusivity equation to combine with trilinear-flow model]; (3)
it fills the gap between trilinear-flow model on the symmetry hypothesis of MFHW and the
actual asymmetry multi-fractured configuration [Brown’s and Cossio’s models were estab-
lished on the symmetry hypothesis of MFHW]. The semi-analytical model could provide
more reasonable and practical simulations of transient pressure response in fractured media.

2 Physical Model

2.1 Background

In the terms of fundamental research on microscopic pore structure characterization, fractal
theory is implemented to characterize the randomness of pore sizes in heterogeneous porous
media (Cai and Yu 2011) and determine the permeability of fibrous porous media (Cai et al.
2015). These parameters could reflect the flow paths and play an important role in flow
characterization of effective diffusivity and flow resistance. To represent the uncertainty and
heterogeneity in fractured porous media, fractal theory is also useful in determining the
macroscopic properties of individual fractures and of fracture network (Adler and Thovert
1999). As consequence, non-local and memory effect in fractal-like structure needs to be
considered to account for the associated anomalous diffusion in highly complex media with
fractal geometry [seen Raghavan (2012a, b); Raghavan et al. (2013a, b); Chen and Raghavan
(2013, 2015) and Ozcan et al. (2014) for the detailed explanation and analysis of fractional
diffusion effect on production performance of MFHW]. Appendix 1 provides the detailed
explanation on the theory of Fractal Geometry and Anomalous Diffusion.

As seen from Fig. 1, massive fracturing treatment contributes to complex fracture net-
work; meanwhile, the density of fracture network monotonically decreases as the distance
from the main fracture plane increases based on the microseismic mapping result. In addition
to orthogonal fracture (wire-mesh) and discrete fracture network (DFN) techniques, for the
purpose of simulating the linear-flow geometry, it is reasonable to assume that the perme-
ability field is distance-dependent based on idealized linear model according to the valid
works previously presented by Cossio et al. (2013) and Fuentes-Cruz (2014a, 2014b, 2015).
Therefore, in this work, we incorporate the fractal theory and anomalous diffusion theory to
characterize the feature of fluid flowing throughout fractured porous media.

2.2 Description

Figure 2 depicts the idealized MFHWmodel, consisting of nf representative elementary vol-
umes (REV). As seen in Fig. 2a, the effective drainage volume controlled by MFHW refers
to the maximum areal extent contributing hydrocarbons to the well in its lifetime. In the
area far beyond effective drainage area, the contribution of reservoir volume is usually neg-
ligible because of ultra-low permeability of natural fracture and matrix. Therefore, effective
drainage volume is determined by eventual well spacing and fractured horizontal segment
and potentially divided into three distinct regions:

(1) Hydraulic Fractured Volume (HFV)HFV consists of a set of discrete finite-conductivity
hydraulic fractures intersected by horizontal wellbore. HFV contributes much higher
conductivity and better connection with reservoirs.
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Fig. 1 Fracture network containing hydraulic and induced fracture sets. a Conceptual model of stimulated
reservoirs volume (Fuentes-Cruz et al. 2015). b The distribution of induced fracture network based on micro-
seismic mapping (Cipolla et al. 2012), c Three varying degrees of fracture network complexity (Cipolla et al.
2011)
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Fig. 2 Schematic of multifractured reservoirs with fractal geometry. a multi-fractured horizontal well in
effective drainage volume (SRV & XRV & HFV). b n-th representative elementary volume (REV) within
MFHW. c Power-law functions represent the permeability and porosity field within SRV region
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(2) Stimulated Reservoir Volume (SRV) SRV is created in the vicinity of HFV. SRV is
related to the nonuniformly distributed permeability/porosity with fractal characteristic
on a wide range of scales. Generally, its areal extension is determined by perforated
lateral length and dominant fracture length.

(3) External Reservoir Volume (XRV) XRV refers to the part of effective drainage area in
addition to HFV and SRV. XRV is slightly disturbed by fracturing treatment but could
contribute hydrocarbons in production lifetime. It locates in the vicinity beyond fracture
tips, external to SRV region.

In Fig. 2b, on the scale of individual fracture, REV contains four parts: one SRV element,
two half-width HFV elements (left-side half-width HF and right-side half-width HF), one
XRV element. In Fig. 2c, the highest permeability-porosity (kξ

SRV and ϕξ
SRV, where ξ = L

indicates the value of left-side half-width HF, ξ = R indicates right side) is located on the
main fracture plane (y = wHF/2), and the value decreases as the distance to the fracture
plane increases, until to minimum value. The minimum value (k∗

SRV and ϕ∗
SRV) is reached at

y = Lm, where the energy of fracturing treatment operation dissipates to the minimum.
In this work, we represent the permeability/porosity fieldwith regard to spatial distribution

by using fractal theory, which are rewritten in a different way from Eqs. (17)–(18). They are
now represented in reference of fracture plane:

kSRV(y) = krefSRV

(
y

L ref

)d f −de−θ

(1)

φSRV(y) = φref

(
y

L ref

)d f −de
(2)

It is obvious that we could obtain corresponding values of df and θ through using given
parameters (kξ

SRV, k
∗
SRV, ϕ

ξ
SRV, ϕ

∗
SRV, Lm,Ls), as follows:

⎧⎪⎪⎨
⎪⎪⎩
d f,R = ln

(
φ∗
SRV

φR
SRV

)
ln−1

(
Ls−Lm
wHF/2

)
+ de

d f,L = ln

(
φ∗
SRV

φL
SRV

)
ln−1

(
Lm

wHF/2

)
+ de

(3)

⎧⎪⎪⎨
⎪⎪⎩

θR = ln−1
(
Ls−Lm
wHF/2

)
ln

(
φ∗
SRVk

R
SRV

φR
SRVk

∗
SRV

)

θL = ln−1
(

Lm
wHF /2

)
ln

(
φ∗
SRVk

L
SRV

φL
SRVk

∗
SRV

) (4)

It is noted that we recast three regions with different characterized geometries [e.g., finite-
conductivity HFV, fractal-likemedia for SRV, and uniformmedia for XRV] for the purpose of
highlighting each other’s distinction as a consequence of the fracturing treatment operation.

3 Mathematical Model

The new formulation of MFHW is established based on multiple trilinear-flow models with
fractal geometry. Each individual trilinear-flowmodel corresponds to aREVas seen inFig. 2b.
For single REV, we derive the solutions for the XRV, SRV and HFV sequentially, and then
couple the solutions by using the flux- and pressure-continuity conditions on the interface
between the regions. And then, we couple the solutions for multiple REVs by using pressure
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superposition principle on the basis of flux restriction and infinite-conductivity wellbore
assumption.

According to the descriptions above, some idealizations and simplifying assumptions are
summarized as follows:

• An isotropic, horizontal, slap gas reservoir is bounded by overlying and underlying imper-
meable strata;

• The height of HFV, SRV and XRV is assumed to be same as the strata height;
• The petrophysical properties in XRV are homogeneous and identical (i.e., permeability

and porosity is uniform);
• HFV connects to horizontal wellbore, and HF wings are symmetrically spaced with

regard to horizontal wellbore. Correspondingly, production from the surface of horizontal
wellbore might be negligible;

• The production process is isothermal, and matrix and fracture network are considered
incompressible compared to gas compression.

3.1 Solution for Single REV

3.1.1 External Reservoir Volume with Continuum

Within XRV, the volume is less slightly fractured comparedwith SRV due to the decrement of
fracturing treatment. Hence, fracture network within XRV is modeled as continuum media,
where fractures interconnect with each other.

After incorporating dimensionless definitions in Appendix 1, the dimensionless pressure
governing equation in Laplace-transform domain is satisfied as follows:

∂2 p̃XRVD
∂x2D

= s

ηXRVD
p̃XRVD (5)

Appendix 3 provides the details of derivation for Eq. (5). Thus we could obtain the
dimensionless flux on interface between SRV and XRV, which is given as

(
∂ p̃XRVD

∂xD

)∣∣∣∣
xD=xHFD

= −F̃XRV
SRV ( p̃SRVD)|xD=xHFD (6)

where p̃XRVD represents the dimensionless pressure of XRV, p̃SRVD represents the dimen-
sionless pressure of XRV, s represents the Laplace variable, ηXRVD represents the diffusion
capacity of XRV, xHFD represents the dimensionless half-length of hydraulic fracture, and
F̃XRV
SRV is the characteristic function, which represents the dimensionless flux from XRV to

SRV.

3.1.2 Stimulated Reservoir Volume with Fractal Fracture Network

A representative unit of SRV is selected as the element ofMFHW, defined as REV.Within one
REV, related variables to fracture are distinguished by superscript denoted as R and L . After
incorporating Laplace transformation, the flow equation in SRV is given in the following
form of dimensionless pressure, this is

∂2 p̃ξ
SRVD

∂y2D
+ d f,ξ − de − θξ

yD

∂ p̃ξ
SRVD

∂yD
= y

θξ

D

(
sγξ

η
ξ
SRVD

+ λXRVSRV,ξ F̃
XRV
SRV,ξ

s1−γξ

)
p̃ξ
SRVD (7)
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where, ξ indicates R or L , where R represents the right-side SRV region in REV, L represents
left-side. df,ξ indicates fractal dimension in the left- or right-side SRV region, θξ indicates
scaling variable in the left- or right-side SRV region, γf,ξ indicates fractional derivative order

in the left- or right-side SRV region, de indicates Euclidean dimension. p̃ξ
SRVD represents

dimensionless pressure in the left- or right-side SRV region, p̃ξ
HFD represents dimensionless

pressure in the left- or right-side HF. ηξ
SRVD represents the diffusion capacity of the left- or

right-side SRV region, λXRVSRV,ξ indicates flow capacity ratio of XRV to the left- or right-side

SRV region. F̃XRV
SRV,ξ is the characteristic function, which represents the dimensionless flux

from XRV to the left- or right-side SRV region, F̃SRV
HF,ξ is the characteristic function, which

represents the dimensionless flux from the left- or right-side SRV region to corresponding
HF.

Appendix 4 presents the detailed derivation of solutions for Eq. (7). Therefore, the dimen-
sionless influx from SRV into HF could be obtained. As seen in Fig. 2a, MHFW consists of
two kinds of REV: inner REV and outermost REV (i.e., including one half-width fracture).
For outermost REV in MFHW,(

∂ p̃ξ
SRVD

∂yD

)∣∣∣∣∣
yD=0.5wHFD

= −F̃SRV
HF,ξ

(
p̃ξ
HFD

∣∣∣
yD=0.5wHFD

)
(8a)

For inner REV, (
∂ p̃LSRVD

∂yD

)∣∣∣∣∣
yD=0.5wHFD

= F̃SRV
HF,R1

(
p̃RHFD

∣∣
yD=0.5wHFD

)

−F̃SRV
HF,L1

(
p̃LHFD

∣∣
yD=0.5wHFD

)
(8b)(

∂ p̃RSRVD
∂yD

)∣∣∣∣∣
yD=0.5wHFD

= F̃SRV
HF,R2

(
p̃RHFD

∣∣
yD=0.5wHFD

)

−F̃SRV
HF,L2

(
p̃LHFD

∣∣
yD=0.5wHFD

)
(8c)

The effect of fracture–production interaction is further decomposed into two parts: (a)
interaction between adjacent fractures within REV, (b) interaction between adjacent REVs.
Section 3.1.2 only accounts for the effect of interaction between adjacent fractures within
REV. The adjacent REV interaction would be presented in Sect. 3.2, which is considered by
incorporating pressure superposition principle.

3.1.3 Hydraulic Fractured Volume with Discrete Fractures

Utilizing modified Darcy law in Laplace domain, Eq. (20), the dimensionless pressure gov-
erning equation of fracture is given in the following dimensionless form.

∂2 p̃ξ
HFD

∂x2D
+ 2

λSRVHF,ξ

sγξ −1

(
∂ p̃ξ

SRVD

∂yD

)∣∣∣∣∣
yD=0.5wHFD

= s

η
ξ
HFD

p̃ξ
HFD (9)

where, ξ indicates R or L , where R represents the right-side SRV region in REV, L represents
left-side. p̃ξ

HFD represents the dimensionless pressure of the right- or left- side hydraulic

fracture, ηξ
HFD represents the diffusion capacity of the left- or right-side hydraulic fracture,

λSRVHF,ξ indicates flow capacity ratio of the left- or right-side SRV to corresponding HF.
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Appendix 4 provides the detailed derivation of Eq. (9). The dimensionless pressure dis-
tribution along hydraulic fracture is subsequently given. For outermost REV,

p̃ξ
HFD(xD) = 2π q̃ξ

HFD

Cξ
HFD

coth

(
xHFD

√
s/ηξ

HFD + 2λSRVHF,ξ F̃
SRV
HF,ξ /s

γξ −1
)

√
s/ηξ

HFD + 2λSRVHF,ξ F̃
SRV
HF,ξ /s

γξ −1
(10a)

For inner REV,

p̃LHFD(xD) = q̃LHFDAX
L
SRV(xD) + q̃RHFDBXL

SRV(xD) (10b)

p̃RHFD(xD) = q̃LHFDBXR
SRV(xD) + q̃RHFDAX

R
SRV(xD) (10c)

It is noted that the solutions above are presented based on vertical fracture. This is different
from transverse fracture intersecting horizontal wellbore, which results in the additional
pressure drop aroundhorizontalwellbore.The effect could be taken into account bymodifying
Eqs. (10a)–(10c) according to the method presented by Wang et al. (2016).

3.2 Solution for Multiple REVs

The multiple-fractures system is divided into several independent REV. According to the
superposition principle, pressure distribution caused by nf fractures can be written in Laplace
domain as follows,

p̃Dj,i =
n f∑
i=1

q̃LHFD,i p̃LDj,i +
n f∑
i=1

q̃RHFD,i p̃RDj,i (11)

where subscript “j, i” indicates dimensionless pressure response of the j-th fracture caused by
the production of the i-th fracture. Based on the assumption of infinite-conductivity wellbore,
the dimensionless pressure on the interface between each hydraulic fracture and wellbore is
equal to wellbore pressure pwD.

p̃wD,1 = p̃wD,2 = · · · = p̃wD,n f = p̃wD (12)

In the condition of constant flow rate formultiple-fractures system, the additional condition
yields the following expression in Laplace domain

n f∑
i=1

q̃LHFD,i +
n f∑
i=1

q̃RHFD,i = 1

s
(13)

Thus, we can obtain the following matrix by combining Eq. (11)–(13), which is

A �X = �d (14)

where

A =

⎡
⎢⎢⎢⎢⎢⎣

A1 −B1

A2 −B2
. . .

...

An f +1 −Bn f +1

BT
1 BT

2 · · · BT
n f +1 0

⎤
⎥⎥⎥⎥⎥⎦

, �X =

⎡
⎢⎢⎢⎢⎢⎣

X1

X2
...

Xn f +1

s p̃wD

⎤
⎥⎥⎥⎥⎥⎦

, �d =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...

0
1

⎤
⎥⎥⎥⎥⎥⎦

(15a)
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where bold types in Eq. (14) indicate vectors and matrixes. The i-th element in matrix A
represents the i-th REV, which can be further expressed as,

Ai =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

AXR,1
SRV, i = 1[

AXL,i
SRV BXL,i

SRV

BXR,i
SRV AXR,i

SRV

]
, 2 ≤ i ≤ n f

AX
L,n f +1
SRV , i = n f + 1

(15b)

and element B represents the constraint of Eq. (13), which is given as

Bi =
{
1, i = 1 and n f + 1[
1 1

]T
, 2 ≤ i ≤ n f

(15c)

In addition, dimensionless rate vector X of single half-width fracture is expressed as

Xi =

⎧⎪⎪⎨
⎪⎪⎩

sq̃R,1
HFD, i = 1[
sq̃L,i−1

HFD sq̃R,i
HFD

]T
, 2 ≤ i ≤ n f

sq̃
L,n f
HFD , i = n f + 1

(15d)

By solving Eq. (14), we can obtain the unknown wellbore pressure and the flow rate distrib-
ution of hydraulic fractures in real-time domain by integrating Newton iteration method and
Stehfest numerical inversion algorithm (Stehfest 1970).

4 Model Validation

In this section, two alternative simulations are selected to validate our model. It needs to
be emphasized that multi-linear model has no capacity of simulating pseudo-radial flow
regime in infinite-acting reservoirs, so it must be generated in a finite reservoir with no-
flow boundaries. The constraint condition is generally set to be 0.7 ≤ (xHF/xR) ≤ 1.
It indicates boundary-dominant flow would emerge in advance before pseudo-radial flow
regime occurs. Song et al. (2011) had affirmed that constraint condition is reasonable and
reliable in the practice of fracturing treatment operation. In this section, CfD is redefined as
(kHFwHF)/(kXRVxHF).

4.1 Analytical Validation

In our work, the homogeneity case refers to Euclidean dimension and classical diffusion in
the symmetry configuration of equally spaced fractures with identical properties (fracture
width, length, conductivity, etc.), which is given as

de = 1, d f = 1, γ = 1, θ = 0; LmD = 0.5LsD (16)

When the parameters of REV left region are identical to the right under homogeneity case,
the multi-fractures solution completely converges to conventional MFHW solution. Because
we have not found identical published papers to our model, the validation of homogeneity
case is conducted firstly, which is conducted by comparing with the result of Brown et al.
(2009). Noted that the transformations of parameters between two models, they are list as:
ηXRVD = ηoD, ηSRVD = 1, ηHFD = ηFD, λXRVSRV = 1

yeDCRD
, λSRVHF = 1

CFD
, LsD = yeD,

xRD = xeD , xHFD = 1 (the parameters in the right hand side are quoted from Brown’s
model). As seen in Fig. 3, the model shows excellent agreement with Brown’s results in
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2. Line plot indicates the results of this work

Fig. 3 Comparison of analytical solution for single fracture with Brown’s solution in homogeneity case

Table 1 Basic parameters used for model validation

Basic model parameter Value Basic model parameter Value

Formation width, xR(m) 127.55 Fracture porosity, ϕf (%) 35

Formation thickness, h(m) 2.9 Production rate, qsc(m3/s) 1.157 × 10−5

Formation permeability, km(m2) 10−17 Initial pressure, pi(Pa) 1 × 108

Formation porosity, ϕ(%) 10 Viscosity of fluid, μ(Pa · s) 0.001

Fracture width, wHF(m) 0.0127 Total compressibility, ct(Pa−1) 4.35 × 10−10

Fracture half-length, xHF(m) 114.95

terms of dimensionless pressure and pressure derivatives throughout the whole time domain
under different fracture conductivities.

4.2 Numerical Validation

To verify the model with fractal-like permeability/porosity field, the black oil simulator and
local grid refinement have been induced. In the simulator, we simulate the transient pressure
response ofMFHWwith 5 fractures, and fracture system is made up 5 fractures with different
conductivity in the unequally spaced configuration. The basic model parameters are list in
Table 1.

Here, numerical validation aims to verify the solutions under two cases: uniform perme-
ability/porosity case and fractal-like permeability permeability/porosity case. In the uniform
permeability/porosity case, there are three conditions, including (a) 5 fractures with identical
conductivity in unequally spaced configuration, (b) 5 fractures with different conductivities
in equally spaced configuration, (c) 5 fractures with different conductivities in unequally
spaced configuration. Figure 4 shows the comparison results under three conditions in the
uniform permeability/porosity case.
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Fig. 4 Comparison of analytical solution for MFHW with numerical solution under uniform permeabil-
ity/porosity case
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Fig. 5 Comparison of analytical solution for MFHW with numerical solution under fractal-like permeabil-
ity/porosity case

In the fractal-like permeability permeability/porosity case, there are two conditions,
including (a) 5 fractures with identical conductivity in equally spaced configuration, (b) 5
fractures with different conductivity in unequally spaced configuration. On fracture face, the
permeability is set to be 0.02mDandporosity to be 20%.On the intersection between left- and
right-side regions in SRV, the permeability equals to the value of XRV, 0.01mD; porosity also
equals to the value of XRV, 10%. Using Eqs.(8)–(9), we can obtain permeability/porosity
field within SRV, and corresponding fractal parameters (de = 1, df,L = df,R = 0.8816,
θL = θR = 0, γL = γR = 1). Figure 5 shows the comparison results under two conditions in
fractal-like permeability/porosity field. As shown in Figs. 4 and 5, there are good agreements
between analytical solutions and the numerical solutions under different cases. It is verified
that the semi-analytical model with fractal geometry is reasonable and reliable.

123



www.manaraa.com

720 J. Wang et al.

Table 2 Basic dimensionless data used for Fig. 6, 7, 8 and 9

Basic dimension parameter Symbol Value

Formation width xRD 1000

Fracture number nf 5

Fracture spacing Ls 2

Fracture half-length xHFD 1

Fracture width wHFD 0.001

Fracture conductivity CHFD 10−2, 10−1, . . ., 104

Hydraulic fracture diffusivity ηHFD 101, 100, . . ., 106

SRV diffusivity ηSRVD 1

XRV diffusivity ηXRD 0.05

Flow capacity ratio of SRV–HF λSRVHF 10−4, 10−3, . . ., 102

Flow capacity ratio of XRV–SRV λXRVSRV 0.5

Production rate of MFHW qwD 1

Euclidean dimension de 1

Fractal dimension df 0.5, 0.6, . . ., 1

Scaling variable θ 0

Fractional derivative order γ 0.5, 0.6, . . ., 1

5 Results and Discussions

The advantage of our model is to account for heterogeneity and arbitrary of fracture system,
including the non-uniform distribution of permeability/porosity field in SRV, and the different
properties of fracture (width, permeability, HF number/spacing, etc.).Wewould present some
synthetic examples to illustrate the application of new model by analyzing transient pressure
response. In this section, we mainly discuss the effect of fractal characteristic and anomalous
diffusion on transient pressure response under two conditions in terms of hydraulic fracture:
fracture conductivity and fracture number/spacing. For simplicity, we assume that fractures
have identical properties in the equally spaced configuration, and the properties of SRV
permeability/porosity are symmetrically distributed within one REV. It is noted that the
basic parameters are list in Table 2. To make the flow regimes clearer, the formation width is
set to be very large (xR = 1000) to avoid the appearance of boundary-dominant flow within
observed flow duration.

5.1 Effect of Hydraulic-Fracture Conductivity

Asmentioned previously, the effect of fracture conductivity in uniform permeability/porosity
case has been recognized in previous literature (Chen and Raghavan 1997; Zhao et al. 2014).
In this illustration, seven values of dimensionless fracture conductivity are considered, where
five fractures are equally spaced and dimensionless distance between outermost fractures is
set to be 100.

Firstly, it is necessary to discuss the impact of fracture conductivity on transient pressure
behavior in uniform case (Euclidian geometry and classical diffusion). It is the basis of
further discussion. Here, we identify the flow regime evolution in uniform case by analyzing
the pressure derivatives, as shown in Fig. 6a for dash lines. It is found that all curves can
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Fig. 6 a Effect of HF conductivity on flow regime evolution under fractal and uniform cases. b Effect of
fractal dimension on pressure in large/small fracture conductivity condition

be divided into three parts: early-time flow regime, intermediate-time flow regime and late-
time flow regime. At early-time period, the transient response in fracture is dominant without
SRVparticipation, while the transient response inXRVwould be dominant at late-time period
after the responses in HF and SRV both reach the boundary-dominant state. Noted that late-
time flow regimes are not affected by fracture conductivity, and fracture conductivity mainly
affects the type, sequence and duration of early and intermediate-time flow regimes.

For smaller fracture conductivity (e.g. CfD = 0.01 in uniform case), HF-SRV bilinear
flow (tD ≈ 4×10−5–0.2), HF-SRV-XRV trilinear flow (tD ≈ 0.5–30), and HF-XRV bilinear
linear (tD ≈ 102–4×104) could be subsequently observed at intermediate time period. Here,
HF-SRV bilinear flow is caused by transient response in both HF and SRV without XRV
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Fig. 7 a Effect of fracture conductivity on pressure in anomalous and classical cases. b Effect of anomalous
diffusion index on pressure in large/small fracture conductivity cases

participation; HF-SRV-XRV trilinear flow is caused by transient response in HF, SRV and
XRV; HF-XRV bilinear flow is caused by transient response in HF and XRV after SRV
reaches boundary-dominant state. With fracture conductivity increasing, duration of trilinear
flow gradually shortens until disappear, which contributes to a transition (tD ≈ 1–10) from
HF-SRVbilinear flow toHF-XRVbilinear flow in the absence of trilinear flowwhenCfD = 1.
As HF conductivity further increases, there would appear SRV linear flow (fracture reaches
boundary-dominant flow and XRV participation is too be weak to be neglected) and HF
boundary-dominant flow (without SRV and XRV participation), while the duration of HF-
XRV bilinear flow could further shorten and would disappear for CfD ≥ 10.

In summary, fracture conductivity increasing would contribute to the occurring of fracture
boundary-dominant flow in advance, denoted by gray triangle/square as seen in Fig. 6a;
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Taking example for uniform case, starting time of fracture boundary-dominant flow changes
from tD ≈ 3 × 105 for CfD = 104 to tD ≈ 2 × 103 for CfD = 103, and the smallest starting
time is tD ≈ 3 × 10−7 for CfD = 0.01.

5.1.1 Fractal Case

Figure 6a shows the effect of fracture conductivity on pressure derivative in the condition
of fractal case (df < 1), denoted by unbroken lines. During early-time period, the transient
response in SRV is not taken into account, so the pressure derivatives for fractal case overlap
with uniform case as mentioned above. As soon as the fluid in SRV participates in the flowing
process, the derivatives would deviate from uniform case. During the deviation period, the
fractal case contributes to greater pressure depletion, which is identified by the characterized
straight with larger slope compared with uniform case. During the late-time period, pressure
derivative for different conditions of HF conductivity overlaps again with each other. In
addition, the starting time of HF boundary-dominant flow for fractal case (denoted by gray
squares) accelerates to occur, and the time gap between uniform case and fractal case would
be more obvious as HF conductivity decreases.

In order to further discuss the effect of fractal characteristic, Fig. 6b provides an illustration
including six values of fractal dimension index df . It needs to be emphasized that unbroken
lines indicate the pressure curves of different fractal dimensions when CfD = 0.01, and dash
lines indicate the pressure curves of different fractal dimensions when CfD = 10000. The
overlapping of curves between CfD = 0.01 and 10000 represents the late-time SRV linear
flow; thus, for same fractal dimension, the vacancy betweenCfD = 0.01 and 10000 represents
not shown curves of different fracture conductivities, be similar to Fig. 6a. We find that the
smaller fractal dimension index is, the greater pressure depletion is, which is identified by a
bigger-slope straight. Besides, the gray triangles represent the starting time of late-time SRV
linear flow for smaller fracture conductivity. It indicates that changing fracture conductivity
makes evident difference on the pressure depletion within early-time scope in the case of
stronger fractal structure (smaller value of df ). Put another way, the fracture conductivity
plays a more important role at early-time period in fractal permeability/porosity reservoirs.

5.1.2 Anomalous Diffusion Case

Figure 7a shows the effect of fracture conductivity on pressure for the anomalous diffusion
case of γ < 1 incorporating the influence ofmemory. Comparedwith Sect. 5.1.1, we find that
there are intersects between anomalous diffusion (γ < 1) and classical diffusion (γ = 1),
which is consistent with the conclusion of Raghavan andChen (2013a) that “the characteristic
of intersect is typical of solutions that are governed by fractional diffusion”. At early-time
period when HF linear flow period finishes, the pressure depletion of anomalous diffusion
is smaller than classical diffusion, but would subsequently become greater at the time scope
where starting time is the intersect time. Therefore, anomalous diffusion is advantage in the
terms of reducing pressure depletion in smaller.

Figure 7b further displays the influence of anomalous diffusion. The overlapping of curves
between CfD = 0.01 and 10000 represents the late-time SRV linear flow; thus, for same
anomalous diffusion index, the vacancy betweenCfD = 0.01 and 10000 represents not shown
curves of different fracture conductivities, be similar to Fig. 7a. Themost important results for
anomalous diffusion are twofold: (a) the smaller the anomalous diffusion index γ is, the early
the pressure response deviates from classical diffusion case. For example, the ending time
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of HF linear flow in the condition of larger HF conductivity is at tD ≈ 4 × 10−7 for γ = 1,
but SRV has fully participated in the flowing process at the same time for γ = 0.5; (b) the
duration of intermediate-time period decreases as anomalous diffusion index γ decreases. For
instance, intermediate-time flow regimes (CfD = 104, γ = 0.5), consisting of HF boundary-
dominant flow, SRV linear flow and SRV-XRV bilinear flow, are not identified obviously.
Thus it appears possible to explain the feature of long linear trends in unconventional gas
reservoirs; for example, the duration of linear flow lasts from tD ≈ 2 × 10−5 to tD ≈ 10 for
γ = 0.5 in the condition of larger HF conductivity.

5.2 Effect of Hydraulic-Fracture Number

Figure 8 shows the effect of fracture number/fracture spacing in the configuration of MFHW.
In this illustration, the variable of interest is the fracture number (nf = 2, 3, 4, 5), and
the dimensionless distance between outermost fractures is set to be fixed 100. In the figures,
dashed lines represent the pressure behavior of uniform case, and unbroken line indicates cor-
responding transient pressure (derivative) response in fractal and anomalous cases. In essence,
fracture number has influence on pressure behavior mainly by creating the connected fracture
area to reservoir and generating fracture interaction. Generally, the whole flow regime can
be divided into two parts according to fracture interaction: with fracture–production inter-
action and without fracture–production interaction. Before fracture–production interaction,
the pressure behavior is determined by the individual fracture, where the value of pressure is
proportional to fracture number. As soon as fracture–production interacts, some flow regime
might disappear or appear, and the duration of flow regime would also shorten or elongate,
dependent on fracture number.

5.2.1 Fractal Case

Figure 8 shows the impact of fracture number on transient pressure behavior under fractal
case. From the perspective of pressure depletion, if strong-interconnected SRV (perfectly,
homogeneity case) was created, the effect of HF number would be less obvious. Corre-
spondingly, the curves for homogeneity case are distributed more closely than fractal case
in semi-log coordinate of Fig. 8a. In the contrary, if weak-interconnected SRV is created,
increasing HF number/decreasing fracture spacing would reduce the pressure depletion dra-
matically. Compared with Fig. 8a, Fig. 8b shows that all curves for large fracture conductivity
are distributed more closely than small fracture conductivity. It indicates that increasing
fracture number can significantly reduce pressure depletion for small fracture conductivity
(CfD = 0.01) under fractal case, which is consistent with the finding of Cipolla (2009) that
“if a high-relative-conductivity primary fracture can be created, the effect of primary fracture
spacing is small”.

To reveal further the effect of fracture number on flow regime evolution in the
fractal case, the pressure derivatives in log–log coordinate are presented in Fig. 8c.
It is found that fracture number is the main factor determining the finishing time
of SRV-XRV bilinear flow, denoted by red triangle. With fracture number increasing,
the effect of fracture interaction becomes stronger. Hence, pressure derivative will fol-
low the XRV linear flow regime in advance, characterized by a 0.5-slope straight. At
the same time, the duration of SRV-XRV bilinear flow would shorten, which changes
from tD ≈ 3 ∼ 1000 for nf = 2 to tD ≈ 3 ∼ 70 for nf = 5. In addi-
tion, the pressure derivatives of late-time flow regime for different HF numbers are
parallel distributed, not overlapping like homogeneity case. It illustrates that the effec-
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Fig. 8 a Effect of fracture
number on pressure in fractal and
uniform cases (CfD = 104). b
Effect of fracture number on
pressure in large/small fracture
conductivity
(df = 0.9, θ = 0, γ = 1). c
Effect of fracture number on flow
regime evolution in fractal and
uniform cases (CfD = 104)
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tiveness of fracturing treatment would make difference during the whole production
period of MFHW, which could be improved by creating strong-interconnected SRV
(i.e., fractal dimension constant df gradually approximates to Euclidian dimension constant
of 1).
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Fig. 9 Effect of fracture number on flow regime evolution in anomalous and classical cases (CfD = 104)

5.2.2 Anomalous Diffusion Case

Figure 9 shows the effect of fracture number in the anomalous diffusion case (γ < 1).
In this sub-illustration, the dimensionless fracture conductivity is set to be 10000. As seen
in Fig. 9a, the type, sequence and duration of flow regime are identical with Sect. 5.1.2
before fracture–production interacts. As observed in the time interval of tD > 1, anomalous
diffusion will delay the occurring of fracture interaction, denoted by red triangular; taking
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nf = 5 for example, the occurring time of fracture interaction is about tD ≈ 100 for classical
diffusion/homogeneity case, but changes to tD ≈ 600 for anomalous diffusion (γ = 0.8).
Meanwhile, the duration of transition flow from SRV-XRV bilinear to XRV linear would
elongate. We find that the HF interaction is not evident as anomalous diffusion constant
decreases.

Figure 9b further shows the effect of anomalous diffusion. When γ decreases to a smaller
enough value (i.e., γ < 0.6), the fracture interaction is absent completely, which indicates
the anomalous diffusion makes fracture interaction weaker. Moreover, in the case of strong
anomalous diffusion (γ < 0.6), the pressure curves during the XRV linear-regime period
are distributed more sparsely. Therefore, increasing fracture number would reduce pressure
depletion effectively, which is analogous to fractal case in Sect. 5.2.1.

6 Conclusions

In our work, a semi-analytical solution for multi-fractured horizontal well with fractal geom-
etry is established, and an accurate algorithm is proposed to interpret the transient pressure
behavior. Several principal contributions are further summarized below:

(1) In this paper, we focus on the heterogeneity of SRV andmultiple-fractured configuration
on transient pressure behavior. A general model accounting for the characteristics of
fractured media has been proposed.

(2) The semi-analytical solution accounts for the effect of permeability alterationwithin SRV
and arbitrary properties of HFV. The newly presented algorithm is complete, rigorous,
computationally stable and accurate.

(3) Fractal geometry contributes to greater pressure depletion during the whole flow period,
while anomalous diffusion contribute to smaller pressure depletion at the early-flow
period but becomes larger at the late-flow period.

(4) In the fractured reservoir with fractal geometry and anomalous diffusion, the effect of
HF conductivity on pressure behavior become weaker, but the effect of HF number is
stronger.

(5) The characteristic of fractal geometry and anomalous diffusion makes fracture–
production interaction weaker; the characteristic of intermediate-time flow regimes tend
to be similar, which results in long linear-trending production period in field test.
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Appendix 1: Anomalous Diffusion in Fractal Porous Media

Fractal Porous Media

In the porous media, the feature of fracture and fracture network is generally represented
by two fundamental parameters: permeability and porosity. Chang and Yortsos (1990) were
the first authors adopting a fractal model to describe fractured reservoirs. In Chang’s fractal
model, the permeability andporosity arefirstly described as power-law relations, respectively:
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φ = aVs
G

· rd f −de (17)

k = aVsm

G
· rd f −de−θ (18)

where df is mass fractal dimension (embedded in the Euclidean matrix), de is Euclidean
dimension (always an integer, de = 1 for 1D case, de = 2 for 2D case), θ is conductivity
index reflecting the anomaly in conductivity in fractal object (θ = 0 indicates the classical
random walk), a is site density parameter,m is fracture-network parameter, Vs is volume per
site, G is geometry factor, k is permeability and ϕ is porosity. Here we should emphasis that
Eqs. (17) and (18) do not correspond to point value but to the porosity and permeability of
regions of size r , only suggesting all properties of any region of size r are scale-dependent
following a power law in a fractal medium [seen in the dissertation of Cissio (2012) for
integrated explanation].

Anomalous Diffusion

As consequence, non-local and memory effect in fractal-like structure needs to be considered
to account for the associated anomalous diffusion in highly complexmediawith fractal geom-
etry [seen Raghavan (2012a, b), Raghavan et al. (2013a, b) and Chen and Raghavan (2013,
2015) for the detailed explanation and analysis of fractional diffusion effect on production
performance of MFHW]. This essentially differs from conventional Darcy formation used
in the induced flow capacity model. Through using Continue Time Random Walk (CTRW)
model presented by Raghavan (2012a), anomalous diffusion is presented by the modified
Darcy rate in a convolved form:

�v = − k

μ

∂

∂t

∫ t

0

∇ p

(t − t ′)1−γ
dt ′ (19)

where the constant γ builds a relation between fractal structure model and anomalous diffu-
sion, γ = 2

2+θ
. Thus, θ = 0 indicates the classical random walk/diffusion, namely described

by traditional Darcy formula. More specifically, it is described as sub-diffusive if θ > 0 and
super-diffusive if θ < 0. According to Caputo fractional operator (1967), modified Darcy
law is presented in the form of fractional derivative,

�v = − k

μ

∂1−γ ∇ p

∂t1−γ
(20)

The anomalous diffusion provides new insight into the transport process throughout fractal-
like porousmedia and improves PTA and RTA interpretations [e.g., linear trend of production
rate over exceedingly long time in fractured reservoirs presented by Raghavan et al. (2013a);
the faster or slower rate decline from complex reservoirs than classical diffusion in early-time
response presented by Chen and Raghavan (2013)].

Appendix 2: Dimensionless Definitions

The dimensionless pressure, time respectively are given as,

pξD = 2πkrefh

qrefμct
(pi − pζ ), ζ = HF, SRV, XRV (21)
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tD = kref
φrefcL2

ref

t (22)

In the hydraulic fracture model, the dimensionless fracture conductivity, CHFD, is

CHFD = kHFwHF

kref L ref
(23)

Note that the dimensionless fracture conductivity is defined with the reference length and
reference permeability.

The dimensionless hydraulic fracture diffusivity is given as

ηHFD = kHFφref

φHFkref
(24)

The dimensionless diffusivity of SRV is given as

ηSRVD = krefSRV

kref

(
φrefμcL2

ref

kref

)γ−1

(25)

The dimensionless diffusivity of XRV is given as

ηXRVD = kXRV/φXRV

kre f /φref
(26)

The flow capacity ratio between SRV and HF is given,

λSRVHF = krefSRVL ref

kHFwHF

(
wHF

2L ref

)d f −de−θ
(

φrefμcL2
ref

kref

)γ−1

(27)

The flow capacity ratio between XRV and SRV is given,

λXRVSRV = kXRVL refφref

krefSRVxHF

(
kref

φrefμcL2
ref

)γ−1

(28)

The dimensionless production rate of hydraulic fracture is defined as,

qHFD = qHF
qref

(29)

The dimensionless length in 1D coordinates is

ξD = ξ

L ref
, ξ = x, y, xR, x f , Ls, wHF (30)

Appendix 3: Flow Model and Solution for XRV

The fundamental partial differential equation that governs fluid flow into XRV is given in the
1D coordinate system by,

− ∂

∂x
(ρ�vXRV) = φXRV

∂ρ

∂t
(31)
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In dimensionless terms defined in Appendix B, Eq. (31) can be rewritten in Laplace-
transform domain

∂2 p̃XRVD
∂x2D

= s

ηXRVD
p̃XRVD (32)

According to no-flow condition on outer boundary of XRV (x = xR) and coupling condi-
tion on interface between XRV and SRV (x = xHF), similar to Eq. (20)–(21) in the work of
Brown et al. (2009), we could obtain the dimensionless flux on the interface between SRV
and XRV region, as follows:

(
∂ p̃XRVD

∂xD

)∣∣∣∣
xD=xHFD

= −F̃XRV
SRV

(
p̃SRVD|xD=xHFD

)
(33)

where F̃XRV
SRV is defined as the characteristic function representing the dimensionless flux from

XRV to SRV, which is given as

F̃XRV
SRV =

√
s

ηXRVD
tanh

[√
s

ηXRVD
(xRD − xHFD)

]
(34)

Appendix 4: Flow Model and Solution for SRV

Two coordinate systems are, respectively, established with respect to fracture plane. Within
the REV, the flow equation in Right/Left side region is given as,

∂(ρ�vξ
SRV)

∂y
+ ∂(ρφ

ξ
SRV)

∂t
= 0 (35)

Using fractal-geometry equation presented by Eqs. (1)–(2) and modified Darcy equation
presented by Eq. (20), we could obtain pressure governing equation as,

∂1−γξ

∂t1−γξ

[
∂kξ

SRV

∂y

∂mξ
SRV

∂y
+ kξ

SRV
∂2 pξ

SRV

∂y2

]

= −φSRV

[
kXRV
xHF

(
∂pXRV

∂x

)∣∣∣∣
x=xHF

− μct
∂pξ

SRV

∂t

]
(36)

The dimensionless pressure governing equation in Laplace-transform domain is rewritten
as follows:

∂2 p̃ξ
SRVD

∂y2D
+ d f,ξ − de − θξ

yD

∂ p̃ξ
SRVD

∂yD
= y

θξ

D

(
sγξ

η
ξ
SRVD

+ λXRVSRV,ξ F̃
XRV
SRV,ξ

s1−γξ

)
p̃ξ
SRVD (37)

where, ξ represents the Right/Left side region or Middle point between right- and left-side
region within REV.
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Solution for Outermost REV

The dimensionless pressure is continuous in the interface between SRV and HFV,
p̃ξ
SRVD(0.5wHFD) = p̃ξ

HFD, and the condition is no-flow on the outermost boundary of SRV,

(
∂ p̃ξ

SRVD

∂yD

)∣∣∣∣∣
yD=LmD,ξ

= 0. (38)

Equation (33) is a general form of the modified Bessel differential equation. According
to the general solution presented by Bowman (1958), the dimensionless flux on interface
between SRV and HF could be obtained,

(
∂ p̃ξ

SRVD

∂yD

)∣∣∣∣∣
yD=0.5wHFD

= −F̃SRV
HF,ξ

(
p̃ξ
HFD

∣∣∣
yD=0.5wHFD

)
(39)

where F̃SRV
HF indicates the influx supply from SRV into HF.

F̃SRV
HF,ξ (40)

= bξ cξw
cξ −1
HFD

2cξ −1

Inξ −1(bξ L
cξ
mD)Knξ −1(0.5cξ bξw

cξ
HFD) − Knξ −1(bξ L

cξ
mD)In−1(0.5cξ bξw

cξ
HFD)

Inξ (0.5
cξ bξw

cξ
HFD)Knξ −1(0.5cξ bξ L

cξ
sD) + Knξ (0.5

cξ bξw
cξ
vHFD)In−1(bξ L

cξ
mD)

Solution for Inner REV

Boundary Condition 1: The dimensionless pressure is continuous in the interface between
SRV and HFV, which is respectively satisfied as,

For left-side region:

p̃LSRVD(0.5wHFD) = p̃LHFD; p̃LSRVD(LmD) = p̃MHFD (41)

For right-side region:

p̃RSRVD(0.5wHFD) = p̃RHFD; p̃RSRVD(LsD − LmD) = p̃MHFD (42)

Boundary Condition 2: the flux continuity on the interface between Right and Left SRV
region is given as

(
∂ p̃LSRVD

∂yD

)∣∣∣∣∣
yD=LmD

+
(

∂ p̃RSRVD
∂yD

)∣∣∣∣∣
yD=LsD−LmD

= 0 (43)

Anomalous to the derivation in Section D1, the dimensionless influx on the surface of HF,
as follows:
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(
∂ p̃LSRVD

∂yD

)∣∣∣∣∣
yD=0.5wHFD

= F̃SRV
HF,R1

(
p̃RHFD

∣∣
yD=0.5wHFD

)

−F̃SRV
HF,L1

(
p̃LHFD

∣∣
yD=0.5wHFD

)
(44)(

∂ p̃RSRVD
∂yD

)∣∣∣∣∣
yD=wHFD/2

= F̃SRV
HF,R2

(
p̃RHFD

∣∣
yD=0.5wHFD

)

−F̃SRV
HF,L2

(
p̃LHFD

∣∣
yD=0.5wHFD

)
(45)

where

F̃SRV
HF,R1 = −

(wHFD

2

)aL+cL−1−aR (LsD − LmD)aR+cR−1�R1

LaL
mD�

(46)

F̃SRV
HF,L2 = −

(wHFD

2

)aR+cR−1−aL LaL+cL−1
mD �L2

(LsD − LmD)aR�
(47)

F̃SRV
HF,L1 = −

(wHFD

2

)cL−1
(
EL1� + LcL−1

mD �L1

�

)
(48)

F̃SRV
HF,R2 = −

(wHFD

2

)cR−1
(
ER2� + (LsD − LmD)cR−1�R2

�

)
(49)

Relative relationships used are list as follows:

� =
2∑

i=1

bξ cξ L
cξ −1
D,ξ

Knξ (δξ,1)Inξ −1(δξ,2) + Knξ −1(δξ,2)Inξ (δξ,1)

Knξ (δξ,2)Inξ (δξ,1) − Knξ (δξ,1)Inξ (δξ,2)
(50)

�R1 =
2∏

i=1

bξ cξ

Knξ (δξ,i )Inξ −1(δξ,i ) + Knξ −1(δξ,i )Inξ (δξ,i )

Knξ (δξ,2)Inξ (δξ,1) − Knξ (δξ,1)Inξ (δξ,2)
(51)

�L2 =
2∏

i=1

bξ cξ

Knξ (δξ,k)Inξ −1(δξ,k) + Knξ −1(δξ,k)Inξ (δξ,k)

Knξ (δξ,2)Inξ (δξ,1) − Knξ (δξ,1)Inξ (δξ,2)
, k =

{
2, if i = 1
1, if i = 2

(52)

�L1 =
2∏

i=1

bLcL
KnL (δL ,i )InL−1(δL ,i ) + KnL−1(δL ,i )InL (δL ,i )

KnL (δL ,2)InL (δL ,1) − KnL (δL ,1)InL (δL ,2)
(53)

�R2 =
2∏

i=1

bRcR
KnR (δR,i )InR−1(δR,i ) + KnR−1(δR,i )InR (δR,i )

KnR (δR,2)InR (δR,1) − KnR (δR,1)InR (δR,2)
(54)

when i = 1, ξ denotes Left and LD,ξ = LmD; when i = 2, ξ denotes Right and LD,ξ =
LsD − LmD. Meanwhile,

EL1 = bLcL
KnL (δL ,2)InL−1(δL ,1) + KnL−1(δL ,1)InL (δL ,2)

KnL (δL ,2)InL (δL ,1) − KnL (δL ,1)InL (δL ,2)
(55)

ER2 = bRcR
KnR (δR,2)InR−1(δR,1) + KnR−1(δR,1)InR (δR,2)

KnR (δR,2)InR (δR,1) − KnR (δR,1)InR (δR,2)
(56)
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And

δξ,1 = 0.5bξ cξwHFD, δξ,2 = bξ cξ LD,ξ (57)

aξ = θξ + de − d+
f,ξ1

2
(58)

bξ =
(
2

θξ

+ 2

)√√√√sγξ −1

(
s

η
ξ
SRV D

+ λXRVSRV,ξ F̃
XRV
SRV,ξ

)
(59)

cξ = θξ + 2

2
(60)

nξ = aξ

cξ

(61)

Appendix 5: Flow Model and Solution for HFV

In single REV, the flow equations in the right or left half-HF are given by,

∂(ρ�vξ
HF )

∂x
+ 2

wHF

(
ρ�vξ

SRV

)∣∣∣
y=wHF/2

+ ∂(ρφ
ξ
HF)

∂t
= 0 (62)

Incorporating fractal-geometry equation presented by Eqs. (1)–(2) and modified Darcy
equation presented by Eq. (20), we use dimensionless definition as Appendix B to deal with
Eq. (62). Hence, the dimensionless pressure is given in Laplace-transform domain as,

∂2 p̃ξ
HFD

∂x2D
+ 2

λSRVHF,ξ

sγξ −1

(
∂ p̃ξ

SRVD

∂yD

)∣∣∣∣∣
yD=wHFD/2

= s p̃HFD
ηHFD

(63)

Boundary Condition 1: The flux rate from the region beyond hydraulic fracture tip into
HFV is neglected (xD = xHFD),

(
∂ p̃ξ

HFD

∂xD

)∣∣∣∣∣
xD=xHFD

= 0 (64)

Boundary Condition 2: The flux rate along half-width fracture into horizontal wellbore is
given by

(
∂ p̃ξ

HFD

∂xD

)∣∣∣∣∣
xD=0

= − 2π

Cξ
HFD

q̃ξ
HFD (65)

where ξ = Le f t or Right . Taking Fourier cosine transformation and inversion transforma-
tion, we can obtain the solution for Eq. (63).
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Solution for Outermost REV

For outermost REV,

p̃ξ
HFD(xD) = 2π q̃ξ

HFD

Cξ
HFD

(
s

η
ξ
HFD

+ 2λSRVHF,ξ F̃
SRV
HF,ξ

sγξ −1

)−1/2

coth

⎛
⎝xHFD

√√√√ s

η
ξ
HFD

+ 2λSRVHF,ξ F̃
SRV
HF,ξ

sγξ −1

⎞
⎠ (66)

F̃SRV
HF is the characteristic function which has been defined in Appendix D1.

Solution for Inner REV

For inner REV

p̃LHFD(xD) = AXL
SRV(xD)q̃LHFD + BXL

SRV(xD)q̃RHFD (67)

p̃RHFD(xD) = AXR
SRV(xD)q̃RHFD + BXR

SRV(xD)q̃LHFD (68)

where

AXL
SRV = 2π

∞∑
m=0

cos(βmxD)

NmCL
HFD�L

(
β2
m + 2

λSRVHF,R F̃
SRV
HF,R2

sγL−1 + s

ηRHFD

)
(69)

BXL
SRV = 4π

∞∑
m=0

cos(βmxD)

NmCL
HFD�L

λSRVHF,L F̃
SRV
HF,R1

sγL−1 (70)

AXR
SRV = 2π

∞∑
m=0

cos(βmxD)

NmCR
HFD�R

(
β2
m + 2

λSRVHF,L F̃
SRV
HF,L1

sγR−1 + s

ηLHFD

)
(71)

BXR
SRV = 4π

∞∑
m=0

cos(βmxD)

NmCR
HFD�R

λSRVHF,R F̃
SRV
HF,L2

sγR−1 (72)

and

�L =
(

β2
m + 2

λSRV
HF,L F̃

SRV
HF,L1

sγL−1 + s

ηLHFD

)(
β2
m + 2

λSRVHF,R F̃
SRV
HF,R2

sγL−1 + s

ηRHFD

)

−4
λSRV
HF,LλSRVHF,R F̃

SRV
HF,R1 F̃

SRV
HF,L2

s2γL−2 (73)

�R =
(

β2
m + 2

λSRVHF,L F̃
SRV
HF,L1

sγR−1 + s

ηLHFD

)(
β2
m + 2

λSRVHF,R F̃
SRV
HF,R2

sγR−1 + s

ηRHFD

)

−4
λSRVHF,LλSRVHF,R F̃

SRV
HF,R1 F̃

SRV
HF,L2

s2γR−2 (74)

βm = mπ

xHFD
,m = 0, 1, 2, 3 · · · ; Nm =

∫ xHFD

0
cos2(βmxD)dxD =

{
0.5xHFD, m > 0
xvHFD, m = 0

(75)
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